Sunday, 1 December 2013

Java Program to Implement Dijkstra’s Algorithm using Set

This Java program,to Implement Dijkstra’s algorithm using Set.Dijkstra’s algorithm is a graph search algorithm that solves the single-source shortest path problem for a graph with non-negative edge path costs, producing a shortest path tree.
Here is the source code of the Java program to implement Dijkstra’s algorithm using Set. The Java program is successfully compiled and run on a Linux system. The program output is also shown below.
import java.util.* use for all util file .we used this library as replace to below  given library.
  1. import java.util.HashSet;
  2. import java.util.InputMismatchException;
  3. import java.util.Iterator;
  4. import java.util.Scanner;
  5. import java.util.Set;
  6.  
  7. public class DijkstraAlgorithmSet
  8. {
  9.     private int distances[];
  10.     private Set<Integer> settled;
  11.     private Set<Integer> unsettled;
  12.     private int number_of_nodes;
  13.     private int adjacencyMatrix[][];
  14.  
  15.     public DijkstraAlgorithmSet(int number_of_nodes)
  16.     {
  17.         this.number_of_nodes = number_of_nodes;
  18.         distances = new int[number_of_nodes + 1];
  19.         settled = new HashSet<Integer>();
  20.         unsettled = new HashSet<Integer>();
  21.         adjacencyMatrix = new int[number_of_nodes + 1][number_of_nodes + 1];
  22.     }
  23.  
  24.     public void dijkstra_algorithm(int adjacency_matrix[][], int source)
  25.     {
  26.         int evaluationNode;
  27.         for (int i = 1; i <= number_of_nodes; i++)
  28.             for (int j = 1; j <= number_of_nodes; j++)
  29.                 adjacencyMatrix[i][j] = adjacency_matrix[i][j];
  30.  
  31.         for (int i = 1; i <= number_of_nodes; i++)
  32.         {
  33.             distances[i] = Integer.MAX_VALUE;
  34.         }
  35.  
  36.         unsettled.add(source);
  37.         distances[source] = 0;		
  38.         while (!unsettled.isEmpty())
  39.         {
  40.             evaluationNode = getNodeWithMinimumDistanceFromUnsettled();
  41.             unsettled.remove(evaluationNode);
  42.             settled.add(evaluationNode);
  43.             evaluateNeighbours(evaluationNode);
  44.         } 
  45.     }
  46.  
  47.     private int getNodeWithMinimumDistanceFromUnsettled()
  48.     {
  49.         int min ;
  50.         int node = 0;
  51.  
  52.         Iterator<Integer> iterator = unsettled.iterator();
  53.         node = iterator.next();
  54.         min = distances[node];
  55.         for (int i = 1; i <= distances.length; i++)
  56.         {
  57.             if (unsettled.contains(i))
  58.             {
  59.                 if (distances[i] <= min)
  60.                 {
  61.                     min = distances[i];
  62.                     node = i;			
  63.                 }
  64.             }
  65.         }
  66.         return node;
  67.     }
  68.  
  69.     private void evaluateNeighbours(int evaluationNode)
  70.     {
  71.         int edgeDistance = -1;
  72.         int newDistance = -1;
  73.  
  74.         for (int destinationNode = 1; destinationNode <= number_of_nodes; destinationNode++)
  75.         {
  76.             if (!settled.contains(destinationNode))
  77.             {
  78.                 if (adjacencyMatrix[evaluationNode][destinationNode] != Integer.MAX_VALUE)
  79.                 {
  80.                     edgeDistance = adjacencyMatrix[evaluationNode][destinationNode];
  81.                     newDistance = distances[evaluationNode] + edgeDistance;
  82.                     if (newDistance < distances[destinationNode])
  83.                     {
  84.                         distances[destinationNode] = newDistance;
  85.                     }
  86.                     unsettled.add(destinationNode);
  87.                 }
  88.             }
  89.         }
  90.     }
  91.  
  92.     public static void main(String... arg)
  93.     {
  94.         int adjacency_matrix[][];
  95.         int number_of_vertices;
  96.         int source = 0;
  97.         Scanner scan = new Scanner(System.in);
  98.         try
  99.         {
  100.             System.out.println("Enter the number of vertices");
  101.             number_of_vertices = scan.nextInt();
  102.             adjacency_matrix = new int[number_of_vertices + 1][number_of_vertices + 1];
  103.  
  104.             System.out.println("Enter the Weighted Matrix for the graph");
  105.             for (int i = 1; i <= number_of_vertices; i++)
  106.             {
  107.                 for (int j = 1; j <= number_of_vertices; j++)
  108.                 {
  109.                     adjacency_matrix[i][j] = scan.nextInt();
  110.                     if (i == j)
  111.                     {
  112.                         adjacency_matrix[i][j] = 0;
  113.                         continue;
  114.                     }
  115.                     if (adjacency_matrix[i][j] == 0)
  116.                     {
  117.                         adjacency_matrix[i][j] =  Integer.MAX_VALUE;
  118.                     }
  119.                 } 
  120.             } 
  121.  
  122.             System.out.println("Enter the source ");
  123.             source = scan.nextInt();
  124.  
  125.             DijkstraAlgorithmSet dijkstrasAlgorithm = new DijkstraAlgorithmSet(number_of_vertices);
  126.             dijkstrasAlgorithm.dijkstra_algorithm(adjacency_matrix, source);
  127.  
  128.             System.out.println("The Shorted Path to all nodes are ");
  129.             for (int i = 1; i <= dijkstrasAlgorithm.distances.length - 1; i++)
  130.             {
  131.                 System.out.println(source + " to " + i + " is "+ dijkstrasAlgorithm.distances[i]);
  132.             }
  133.         } catch (InputMismatchException inputMismatch)
  134.         {
  135.             System.out.println("Wrong Input Format");
  136.         }
  137.         scan.close();
  138.     }
  139. }
Enter the number of vertices
5
Enter the Weighted Matrix for the graph
0 9 6 5 3 
0 0 0 0 0
0 2 0 4 0
0 0 0 0 0
0 0 0 0 0
Enter the source 
1
The Shorted Path to all nodes are 
1 to 1 is 0
1 to 2 is 8
1 to 3 is 6
1 to 4 is 5
1 to 5 is 3

No comments:

Post a Comment